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ABSTRACT: In thisresearch, a pavement is modeled as a multi-layered elastic system composed
of a subgrade, which is assumed to be a semi-infinite medium on top which there are layers of
finite thickness extended infinitely in a horizontal direction. A horizontal uniformly distributed
load is assumed to act on the pavement surface. Expressing the displacement function of Navier's
eguation in cylindrical coordinate system using harmonic and bi-harmonic functions, the analytical
solution method is obtained through Hankel transformation and Hankel inverse transformation. In
this research a computer program called Analysis of Multi-layered Elastic Systems (AMES),
which can find pavement response due to multiple shear loadings, was developed. The accuracy of
this program is confirmed by comparing results for a number of worked examples with results
obtained using BISAR program. The comparison shows that the stress outputs from BISAR yield
erroneous results at the pavement surface.

Keywords. Multi-layered elastic systems, Navier's equation, harmonic function, bi-harmonic
function, Hankel transformation, AMES

1. INTRODUCTION

The Boussinesq solution, in case of concentrated vertical load acting on the surface of a semi-
infinite body and also the Cerrutti solution in case of the action by concentrated horizontal load
are well known. By integrating solutions of the concentrated load in the range of acircle,
solutions for the case of circular uniformly distributed load can be obtained. However, it has not
been possible to expand these solutions to a multi-layered structure. There are already numerous
researches on the analytical solution based on the elastic theory. Most of these researches were
performed before the invention of computers or when computer performance was still low and as
aresult most of the solutions were presented in the form of tables or graphs. Moreover, solutions
presented were mostly based on a semi-infinite half space while the most famous solutions for a
multilayer system were the Burmister’s solution for the case of axi-symmetric load and Kimura's
solution (1) that was intended for atwo-layer system under a horizontal load. Most of these
researches are well discussed by Poulos & Davis (2) and Kimura (3). Miyamoto (4) explainsin
details the analytical solution for horizontal circular load acting on a semi-infinite medium.

BISTRO computer program may be the first program for analysis of a multilayer elastic
system to be developed specifically for computer application. This program was developed in
1967 by the SHELL research group and was capable of performing axi-symmetric elastic analysis
of amultilayered structure. One of the shortcomings of BISTRO was its inability to consider
interface dip condition. Furthermore, since this program was intended for axi-symmetric analysis,
it was not capable of performing asymmetric analysis of the multilayered structure. Due to these
shortcomings, further modification was done on BISTRO and in 1973 BISAR program was
developed. This program is capable of computing the solution (displacement, stress, strain, etc)
for agiven point in amultilayered elastic structure and is well trusted and highly evaluated among
pavement engineers.

Through development of AAMES (Axi-symmetric Analysis of Multi-layered Elastic
Systems) (5), where effects of uniformly distributed vertical load were investigated, authors of
this paper were able to check the accuracy and performance of BISAR program. Moreover, due
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to limitations on the use of BISAR program together with a number of accuracy problems for the
case of horizontal loading, it is hard to assert that enough check has been done on this program.

The objective of this research was, therefore, to develop a computer program for analyzing
the effect of horizontal load acting on the surface of a multilayered elastic system. By expressing
Navier’s displacement equations in cylindrical coordinate system, Michell and Boussinesg
displacement functions can be converted to harmonic and bi-harmonic functions. Theoretical
solutions would be obtained by the application of Hankel transformation and Hankel inverse
transformation. This procedure is fundamentally smilar to BISAR program. However, the
difference between this method and BISAR is the use of Hankel transformation. In BISAR
program only Bessel functions of the first kind of zero and first orders were used while in this
research Bessel functions of the first kind of zero, first and second orders are used. Furthermore,
a propagation matrix was developed in the Hankel transformation range. By applying boundary
and interface conditions in this range and determining constants of integration, Hankel inverse
transformation could be performed. This solution, which was also used in the development of
AAMES, isrelatively smple.

Evaluation of multiple loading cases is facilitated by placing measurement points as well as
applied loads inside a global coordinate system. A local coordinate axis is introduced at the center
of each loading point and subsequently, solutions for every measurement points are obtained.
Since elastic theory is used, principle of superposition is also applied. Solutions for each case are
then trandated into the global coordinate system where overall superposition of the solutionsis
performed. Accuracy of this program is evaluated by comparing its results with the results
obtained using BISAR. By way of this comparison, problems related to BISAR solutions when a
horizontal load acts on the surface of a pavement structure are highlighted.

The program developed in this research is called AMES (Analysis of Multi-layered Elastic
Systems). At present, this programis set to consider a maximum of 100 loads, 100 layers and
10,000 measurement points.

2. PROBLEM DEVELOPMENT

Pavement structure considered in this research is as shown in Figure 1(a). The subgrade is
assumed to be a semi-infinite elastic medium on top of which there are horizontal layers of finite
thickness extended infinitely in the horizontal direction. Each layer is made up of elastic, isotropic
and homogeneous materials and the boundary condition is assumed to be rough. The circular load
is assumed to act horizontally at the surface of the pavement as shown in Figure 1(b). Coordinate
systemused (X, Y, Z) isaglobal coordinate system, while coordinate system (X, vy, z) isalocal
coordinate system. The origin of local coordinate system s at the center of the loading point and
the direction of the x-axisis similar to the direction of the load. Furthermore, by introducing a
cylindrical coordinate axis with common z-axis, the equilibrium equation can be expressed using
Navier's equations as follows:

N2u+ 1 1@.}.2.}.&&-}-1[_\/\/9_1_&&:0 (1a)

1-2n‘ﬂrg‘ﬂr r rfg fzg r? r?9q
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Figure 1. Analytical model

Ryt thgu,u, 1l ‘"_WQ_l_EE =0 (1b)

1- 2nr1TQe1Tr r rﬂq Tzg r? r’1q

1 ‘HaéTu u 1ﬂv ﬂ_Wg_O (10)
1- 2n ‘ﬂze‘ﬂr r r g9 Nzg
where, n isPoisson’'sratio and u,v,w are displacement componentsin r,?, z directions of the
cylindrical coordinate system.

Since a horizontal uniformly distributed circular load acts on the pavement surface, the
surface boundary conditions for r £a may be given as:

N2w +

t. =-qcosq u
t, = qsing y (29)
s,=0 'D

where, t,,t ,,s, are components of stressand qis adistributed load. Furthermore, for the case
of r >a, the surface boundary conditions may be given as:

t,=t,=s,=0 (2b)

3. Method of Analysis
3.1. Hankel transformation of displacement and stress components
Michell function, F , and Boussinesg function, Y , can be used to represent displacement
components in Equations (1a, b, c) as:
1°F 29Y

=- + —— 3a
u Yz r Yq %3
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1T°F LY

r 191z qr

(3b)

T°F

z2

w=2(1- n)N°F -

(30)

where N? is a Laplace operator in acylindrical coordinate system:

2 2 2
ol 19,19 1 @9
fre rqr r°99° 92z
UsingF and Y , stress componentsin a cylindrical coordinate system may be represented as:

2 s .
lé‘%mz- TS ol 21y (39

2m Iz I’y ‘Iqur2 riro

) )
S I@ge 11 110 el 174 (3f)
2m 1z ror r°99°y  fgér® rirg
s, 1 <> 120
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—e == L e N2 - 2 oF - Y (3n)
2m rﬂqg ) 1225 Tz
t 1 <2 T°0. & 1% 4 :
P T N N g . % (31)
2m ‘Hrg? ) 225 & Tafzg
ty 11 g @ T 1 114 (3))

om riAaé o Sre ¢ WP rirg
where n is ashear modulus. Substituting Equations (3a, b) into Equations (14, b, ¢) and
rearrange yields.

N*F =0 (4a)

N?Y =0 (4D)

From the above relation, it is clear that a unique solution can be obtained if F and Y satisfy
the equilibrium and compatibility equations.
Fourier transformation of F and Y with respect to q gives:

F(r,q,z):gfm(r,z)cosmq (59

m=0
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¥
Y(ra2=ay . 2snm (5b)
m=0
As shown in Figure (1b), since a uniformly distributed load is considered and by making
reference to Equation (2a), only m=1 may be used. Thisimplies, letter min the right hand side
of Equations (5a, b) may be replaced by 1 to become: f (r,z)cosq and y (r,z)sin g, respectively.
Hankel transformation of f (r,z),y (r,z) would give:

(‘; (f (r,2) 3, (xr)dr = G(x, 2) (63)
Q¥ ry (r,z)J,(xr)dr =H(x,2) (6b)

Substituting Equations (5a, b) and (6a, b) into Equations (4a, b), yields:

Q N“f J,(xr)dr —g—- X*x G(x 2)=0 (7a)

b

5 )
§ Ry J,(xrdr :%- X2 3H (x,2) = 0 (7b)

1)

And, solutions to these equations would be:

G(X,2) = (A+B2)e“ +(C+Dze ™ (89
H(x,z) = Ee“ + Fe ™ (8b)

By substituting Equations (5a, b) and Equations (8a, 8b) into Equations (3a, b, and ¢) and
performing Hankel transformation the following relation is obtained:

: \¥r¢aeL ——J (xr)dr,PI

i ecosq smq i

(PN J(xr)dr ! Y AD

: gcosq snqg :: : A,IF'
I'g!l

P S enar 1 1

i €cosq g i [P]Il Ci )

SRNCPASS BC t'

| Q €Cosq i I ET

i i [

| ‘¥rgehz—+ Ly =3, (xr)dri tFp

| eSng COosqg |

I ¥ eet t T

A rec—%—- —2—=J (xr)dr
{Q gdnq cosq o(X) b

where, [Pl] is 6° 6 matrix whose components are shown in Table 1. Coefficients A, B,C,D,E, F
are constants of integration determined by the use of boundary and interface conditions. Values of
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Table 1. [Pl] matrix

x2e*? x(1+xz)eXZ - x%e X x(l- xz)e' Xz 2xe™ 2xe” ¢

x2e*? - x(1+ xz)eXZ x%e” X - x(l- xz)e' Xz 2xe™ 2xe” ¢

- x 2 - X(-2+xz + 4n)e™* x2e X - x(2+xz- 4n)e” 0 0
- 2m<3exZ Xz 3 - xz 2 - Xz

- 2nx(- 1+ xz + 2n)e 2nx~e 2k~ (1+xz- 2n)e 0 0
3 xz 2 Xz 3 -xz 2 - xz 2 xz | - 2mx%eX?

2mxe 2nx " (xz + 2n)e 2nx~e 2nx~ (xz- 2n)e 2nx~e
omcSe*? 2m<2(xz+ 2n)e™” omSe” ¥ 2m<2(xz- on)e” - om%e*® | omPe *®

Table 2. [Pz] matrix

2nx 3eXZ 2nx 2(1+ Xz + 2n)eXZ - 2m(3e' Xz 2m(2(1- Xz + 2n)e” Xz 0 0
ame? 2nx 2(1+ xz+ ) | - om e X% 2m(2(1- Xz + 4n)e” Xz 0 0
0 0 0 0 o2 | 2mc2e” X*

S,,Sq:t,q given by Equation (10) would be computed after A, B,C,D, E,F have been
determined:

I . i Al
: Q¥ r%sr 2_rnL +2_rnL9J ( I’)dl’:J i B.I_
i ecosq r cosq r sinqg | i '|'
lv \¥ %S S ,_ l
re 430 0 J Xr)dr = 10
: Q'g &cosq  cosqg (x) ?/ [P ]' Dy (10)
t
(e AU 2NV Oy g .:. Ef
| esnqg r cosq r sSnqg b TFb

where, [P,] is 3" 6 matrix whose components are shown in Table 2.

Hankel inverse transformation in a cylindrical coordinate system could be performed on the
Hankel transform of displacement and stress components to give:

u \ &U

o :Q XC +——J ,(xr)dx (114)
cosqg 9nq eCosq an
L - L = c‘; XE{‘EL - LQ\]O(Xr)dX (11b)
Ccosq sSIing eCosq sinqg

W ¥ 2 W 0§
A __J d 1ic
cosq -0 Xgcosq (xr)dx (11c)
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S: = &S, (11d)
cosq ecosq
L‘Z—+t—”=qfxaei1—+ tx 9y ,(xr)dx (11e)
sing cosq esing cosqg
Liz__ tzr - N ELIZ_ T__J (Xr)dx (11f)
sing cosq esmq cosq g
S, +l u +l .v (‘)f &S, } u +1 v 93 L(xr)dx (11g)
cosq rcosq rsing cosq rcosq rsinqg
St Sq - @S, —J L(xr)dx (11h)

cosq cos - Q¢ cosq cosq

t T .
g L1 u |1 Vv :d‘xge 1 U 1 V9 L(xr)dx (11i)
sng rcosq rsing gdsing rcosq rsingg

where the top bar represents Hankel transformation of the corresponding displacement and stress
components.

3.2. Expansion to multilayered pavement structure
Figure 1(a) was considered in this analysis. With reference to Equation (9), displacement and
stress components for the i ™ layer would be given as follows:

1u%(zx) , v (zx)U
|

i cosq sng
:I u")(z X) V(')(Z X)_I: i A(X)[j
i g :i: 18,00}
oS T _ |C )1
: §S)(Z(,qx) ?/‘[Pl( )] D, (x )y (12)
00 (0! .:. E, ()]
, sing cosq

i T9(zX) (2% :
T snq cosq b

For the case where displacement and stress components at the boundary between i™ and
(i +1)™ layers are assumed to be continuous and local coordinate systems, whose origins are at
the surface of each layer, are introduced the following relations would be obtained:

7
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: 0(h,%) , v°(h, )i

020 , v (0,0
|

i

. T
cosq snq v cosq sng i
10, %) vO(h,X); a0, X) V0,5
i cosq  snq I 1 cosq snq |
i w® (h,x) i i w'™(0,x) i

' Ccos(q L _ €0s(q ! (13

i < y=i = (i+) y
i s9(h,x) Y S, 7 (0,x) g
i cosq [ cosq !
i r")(hl X, rf'; (h)i T f"*” 0x) , T2 (0x)1
: cosq -I- : ng cosq 'I'
")(h X) t0(h ) f"*”(O x) 5P (0,x) i
T sinq cosq b T sing cosq b

By using Equations (12) and (13) it is possible to develop propagation matrix showing the
relationship between stress and strain components of the 1% layer and constants of integration of
the lowest layer (the N™ layer). Furthermore, when the value of z approachesinfinity in case of
the N™ layer (semi-infinite medium), stress and strain components approach zero and constants
of integration will become: A, =B, =E_, =0.

Hankel transformation of the uniformly distributed circular load, q, whose radiusis a and
acts on the surface of the pavement would be given as:

170(0,x) N t9(0,x)u
|, sing cosq |, _1

I 7
T80X) TP 1a()p (14)
t singq cos(q b
where,
@ _20a
a9 = Qr(20)3 (xrydr ===, (xa) (15

By taking into consideration boundary and interface conditions and representing propagation
matrix components by t.. , the relationship between the 1¥ and N™ layers would be:

ij
190 , vP (0

| P
i (%OSq (15)]” q ¢ €n by ty ty, g t,U 0w
Gi T

: u0x v, X): gtzl o ty ly ly lepy O
COos sin LA

! E(1) q Py by b by Uy 1 U[ C T (16)

, W (0,X) y=é y

| cosq | tf)t41 t24 t34 t44 t54 64 u| D

! 0 Pty gt te e U o .'.

| I € u _ |

i 0 I o s s tis U Ll Fop

: a0 b

and constants of integration for the N™ layer would be determined by:
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1C U @y ty tUl 00

| & ] |
Dy ds te twy | O (27)
1Fb Bs te tef 1300h

By using Equation (17), together with Equations (12) and (13), constants of integration
(AX), B(x), C.(x), D;(x), E(x),and F(x)) for al the layers could be computed in a
stepwise process. This means values on the right hand side of Equations (9) and (10) would be
obtained, and by applying Hankel inverse transformation it is possible to compute values on the
left hand side of Equations (11a) - (11i) to obtain strain and stress components.

However, when r =0, computationof s, and t , using Equations (11g) and (11i) is not
straightforward because of the term 1/r . The L’Hopital rule is used to solve these equations. The
accuracy of computation of Equations (11a) - (11i) is highly influenced by the accuracy of the
semi-infinite integration. In this study, arelatively accurate double exponential (DE) integration
method (6, 7) was used, asin the AAMES program, to solve semi-infinite integration.

4. ANALY SIS FOR MULTIPLE LOADINGS

Figure 2 shows the loading point and measurement point as represented in a global coordinate
system (X,Y, Z). For multiple loadings acting on the pavement surface, the transformation

matrix [S] from cylindrical to global coordinate system is represented by:

gcos(a +q) sn(a+q) Og
[S]=§& sn(a+q) cosfa+q) O (18)
g 0 0 1§

By using this transformation matrix, displacement components in global coordinate system
would be represented as:

(0,0,0)

X
; 2a

- loading poirt (X, Y, 0)

:f,b measurement point
(X +7cos(q +a),Y +rsin( +a),0)

v \
Z

z

Figure 2. Global and local coordinate axes
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Figure 3. Load and layer propertiesin example 1
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|Uu |uu
Ivy [s]v (19)
1Wb ,wb

whereas, stress componentsin local coordinate system would be represented as:

ésx txy t U ésr trq trzl'I

€ U

o So tng=[S]"§. 5. teds] (20)
gtxz tyz S U grz tqz SZH

Displacement and stress components for all individual loading will be obtained in this manner.
Finaly, by using the principal of superposition, the overall displacement and stress componentsin
the global coordinate system due to all the loadings will be obtained by superimposing results
from the individual loadings.

5. NUMERICAL COMPUTATIONS

5.1. Example 1

AMES and BISAR programs were used to obtain pavement response due to horizontal load
acting on the surface of a three-layer pavement structure as shown on Figure 3. Figure 4 shows
pavement response at the point of loading (r =0cm), when the depth z was varied between 0
and 60cm.

Figures 4(a) and 4(b) indicate a good agreement between results of pavement displacements
obtained using AMES and BISAR programs. Results for shearing stress are presented in Figures
4(c) and 4(d). Results for shearing stress, t ,, are shown in Figure 4(c). The difference between
the two programs is more evident near the surface as the difference between the results start
increasing and at the surface where there is a sudden change of value for the case of BISAR result.
This sudden change of shear stress value at the surface of the pavement is not natural and appears

2a=30cm .-

Figure 5. Load and layer properties in example 2
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to lack the support of basic engineering judgment. Results for shear stress, t ., , show similar trend
although there is no sudden change of BISAR result at the surface. This difference can mainly be
attributed to the difference in the level of accuracy in the respective programs when solving semi-
infinite Hankel transformations presented in Equation (9).
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Figure 6. Comparison of AMES and BISAR results (example 2)
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5.2. Example 2

AMES and BISAR programs were again used to obtain pavement response due to two horizontal
loads acting on the surface of athree-layer pavement structure as shown on Figure 5. Figure 5
shows the loading condition in the global coordinate system.

Figures 6(a-€) show variations of displacement and stress components on a 0 to 60cm depth
along the z-axis. Displacement results shown in Figures 6(a) and 6(b) indicate a good agreement
between the two programs. However, similar to example 1 above, stress results presented in
Figures 6(c, d, €) indicate differences between these two programs especially for measurement
points at and near the surface. The difference between these two programs starts increasing near
the surface and there is a sudden jump for the case of BISAR results at the surface of the
pavement structure.

6. CONCLUSIONS

In this study, development of analytical solutions for pavement response due to uniformly
distributed horizontal circular force acting on the surface of a multilayer pavement structure were
presented. Accuracy of the program developed was evaluated by comparison of its results with
BISAR results. The following conclusions were drawn from the results obtained:
The accuracy of the theoretical solution developed in this study was confirmed by comparison
of AMES results with BISAR results
Figure 4(c) in example 1 and Figures 6(c, d, €) in example 2 show a discontinuous pattern of
shearing stress obtained using BISAR. Thisis an indication of computational errors at or near
the multilayer structure for the part of BISAR.
Examples 1 and 2 confirm that AMES program can be used to analyze multilayer structural
response due to a single or multiple horizontal loadings with relatively good accuracy.

AKNOWLEDGMENT

This research study was partly sponsored by Program for Promoting Fundamental Transport
(Project No. 2000-03). The authors would like to acknowledge the support of every one involved
in this project, especialy Mr. Ozawa, who is aformer student at Tokyo Denki University.

REFERENCES

1) Kimura, T. Pavement stress due to horizontal load, JSCE, No. 133, pp. 21-28, 1966.

2) Poulos, H. G. and Davis, E. H. Elastic Solutions for Soil and Rock Mechanics, John Wiley &
Sons, 1974.

3) Kimura, T. Soil stress, Kashima Publication, 1978.

4) Miyamoto, H. Theory of Three-Dimensional Elastic Analysis (in Japanese), 1977.

5) Matsui, K., Maina, JW., Inoue, T. Axi-symmetric Analysis of Elastic Multilayer System
Considering Interface Slips. 2™ International symposium on maintenance and rehabilitation
of pavements and technological control, Alabama, USA, 2001, CD-ROM.

6) Ooura, T. and Mori, M.: The Double Exponential Formula for Oscillatory Functions over Half
Infinity Integral, Journal of Computational and Applied Mathematics 38, pp.353-360. 1991.

7) Mori, M.: Fortran77 Programming for Numerical Computations (revised edition), Iwanami
Shoten. 2000.4



